Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Applied Mathematics and Statistics. 2019, 7(1), 25-31
DOI: 10.12691/AJAMS-7-1-4
Original Research

Modified 1D Multilevel DWT Segmented ANN Algorithm to Reduce Edge Distortion

WMND Basnayake1, , MDT Attygalle1, Liwan Liyanage-Hansen2 and KDW Nandalal3

1Department of Statistics, University of Colombo, Colombo, Sri Lanka

2School of Computing, Engineering and Mathematics, Western Sydney University, Western Sydney, Australia

3Department of Civil Engineering, University of Peradeniya, Peradeniya, Sri Lanka

Pub. Date: January 01, 2019

Cite this paper

WMND Basnayake, MDT Attygalle, Liwan Liyanage-Hansen and KDW Nandalal. Modified 1D Multilevel DWT Segmented ANN Algorithm to Reduce Edge Distortion. American Journal of Applied Mathematics and Statistics. 2019; 7(1):25-31. doi: 10.12691/AJAMS-7-1-4

Abstract

In spite of the ability of Artificial Neural Network (ANN) to handle nonlinear relationships in data, there are instances where ANNs have not been able to predict accurately in the presence of non-stationarity. A novel algorithm that has the ability to treat the nonstationary and nonlinearity in a time series had been presented in [1]. This paper presents a modification done to the algorithm via addressing the edge distortion that arises in the real time execution. The proposed algorithm in [1] was named as “1D Multilevel DWT Segmented ANN Algorithm” where the modified algorithm presented in this paper will be called as “Denoised 1D Multilevel DWT Segmented ANN Algorithm”.

Keywords

edge distortion, nonlinear, non-stationary, wavelet, NAR-ANN

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Basnayake, W. M. N. D., Attygalle, D., & Hansen, L. L., Nandalal, K. D. W. (2017). Wavelet Based Nonlinear Autoregressive Neural Network to Predict Daily Reservoir Inflow. 1st International Conference on Machine Learning and Data Engineering (iCMLDE) (pp.69-75).
 
[2]  Behnia, N., & Rezaeian, F. (2015). Coupling wavelet transform with time series models to estimate groundwater level. Arabian Journal of Geosciences, 8(10), 8441-8447.
 
[3]  Cannas, B., Fanni, A., See, L., & Sias, G. (2006). Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1164-1171.
 
[4]  Cannas, B., Fanni, A., Sias, G., Tronci, S., & Zedda, M. K. (2005). River flow forecasting using neural networks and wavelet analysis. In Geophys. Res. abstr (Vol. 7, p. 08651).
 
[5]  Adamowski, J., & Sun, K. (2010). Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology, 390(1-2), 85-91.
 
[6]  Kisi, O., & Cimen, M. (2011). A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology, 399(1-2), 132-140.
 
[7]  Okkan, U. (2012). Wavelet neural network model for reservoir inflow prediction. Scientia Iranica, 19(6), 1445-1455.
 
[8]  Ramana, R. V., Krishna, B., Kumar, S., & Pandey, N. (2013). Monthly rainfall prediction using wavelet neural network analysis. Water resources management, 27(10), 3697-3711.
 
[9]  Wei, S., Yang, H., Song, J., Abbaspour, K., & Xu, Z. (2013). A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows. Hydrological Sciences Journal, 58(2), 374-389.
 
[10]  Cohen, A., Daubechies, I., & Vial, P. (1993). Wavelets on the interval and fast wavelet transforms. Applied and computational harmonic analysis.
 
[11]  De Queiroz, R. L. (1992). Subband processing of finite length signals without border distortions. In Acoustics, speech, and signal processing, 1992. Icassp-92., 1992 ieee international conference on (Vol. 4, pp. 613-616).
 
[12]  Su, H., Liu, Q., & Li, J. (2012). Boundary effects reduction in wavelet transform for time frequency analysis. WSEAS Transactions on Signal Processing, 8(4), 169-179.
 
[13]  Addison, P. S. (2002). Illustrated wavelet transform handbook. Introductory theory and applications in science, engineering, medicine and finance/paul s. addison. Inst. of Phys. Publ., Philadelphia, Pa.
 
[14]  Williams, J. R., & Amaratunga, K. (1997). A discrete wavelet transform without edge effects using wavelet extrapolation. Journal of Fourier analysis and Applications, 3(4), 435-449.