Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Applied Mathematics and Statistics. 2018, 6(6), 224-231
DOI: 10.12691/AJAMS-6-6-2
Original Research

A New and Simple Prediction Equation for Health-Related Fitness: Use of Honest Assessment Predictive Modeling

Peter D. Hart1, 2,

1Health Promotion Program, Montana State University - Northern, Havre, MT 59501

2Kinesmetrics Lab, Montana State University - Northern, Havre, MT 59501

Pub. Date: November 07, 2018

Cite this paper

Peter D. Hart. A New and Simple Prediction Equation for Health-Related Fitness: Use of Honest Assessment Predictive Modeling. American Journal of Applied Mathematics and Statistics. 2018; 6(6):224-231. doi: 10.12691/AJAMS-6-6-2

Abstract

Background: The five components of health-related fitness are cardiorespiratory endurance, muscular strength, muscular endurance, body composition, and flexibility. To assess an individual on all five components can be time consuming. Thus, it would be useful to fitness specialists if a simpler and valid fitness assessment was available to measure overall health-related fitness. The purpose of this study was to employ honest assessment predictive modeling to find a parsimonious set of variables that can predict overall health-related fitness. Methods: Data used for this study came from college students who completed a fitness test battery. An overall health-related fitness score (T-score) was constructed using maximal oxygen consumption (VO2, ml/kg/min), 1RM bench press (BP, lb), maximal push-up repetition (PU, #), and percent body fat (PBF, %). The set of possible predictor variables consisted of participant age (yr), sex (male/female), body mass index (BMI, kg/m2), waist circumference (WC, cm), 1RM leg press (LP, lb), countermovement vertical jump (VJ, in), flexed arm hang (FAH, sec), physical activity rating (PAR, 0 thru 10), and sit-and-reach (SNR, cm). The honest assessment predictive modeling procedure comprised three steps: 1) development of competing models using a TRAINING dataset, 2) selecting an optimal model using a separate VALIDATION dataset, and 3) assessing fitness score construct validity using a final SCORING dataset. Results: Stepwise model selection with Schwarz Bayesian criterion (SBC) on the TRAINING data resulted in five possible models including sex, VJ, PAR, and WC. Results on the VALIDATION data indicated a three-variable model had the lowest average squared error (ASE) and consisted of sex, VJ, and PAR (F=107.8, p<.001, R2=.82, SEE=3.09). Finally, predicted values from the SCORING data showed that athletes (Mean=54.9, SD=5.1) had a significantly (p<.001) greater mean fitness score than non-athletes (Mean=39.8, SD=4.8). Conclusion: This study presents a valid equation that can simply predict overall health-related fitness in college students.

Keywords

physical fitness, vertical jump, predictive modeling, regression, honest assessment

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  American College of Sports Medicine, editor. ACSM’s health-related physical fitness assessment manual. Lippincott Williams & Wilkins. 2013.
 
[2]  Tikkanen, H. O., Hämäläinen, E., Sarna, S., Adlercreutz, H., & Härkönen, M. (1998). Associations between skeletal muscle properties, physical fitness, physical activity and coronary heart disease risk factors in men. Atherosclerosis, 137(2), 377-389.
 
[3]  Farrell, S. W., Finley, C. E., Barlow, C. E., Willis, B. L., DeFina, L. F., Haskell, W. L., & Vega, G. L. (2017, December). Moderate to high levels of cardiorespiratory fitness attenuate the effects of triglyceride to high-density lipoprotein cholesterol ratio on coronary heart disease mortality in men. In Mayo Clinic Proceedings. Vol. 92, No. 12, pp. 1763-1771.
 
[4]  Wu, Y., Wang, W., Liu, T., & Zhang, D. (2017). Association of grip strength with risk of all-cause mortality, cardiovascular diseases, and cancer in community-dwelling populations: a meta-analysis of prospective cohort studies. Journal of the American Medical Directors Association, 18(6), 551-e17.
 
[5]  Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., Shimano, H., Ohashi, Y. and Yamada, N. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. Jama, 301(19), 2024-2035.
 
[6]  Lee, C. D., Sui, X., & Blair, S. N. (2009). Combined effects of cardiorespiratory fitness, not smoking, and normal waist girth on morbidity and mortality in men. Archives of Internal Medicine, 169(22), 2096-2101.
 
[7]  Borugian, M.J., Sheps, S.B., Kim-Sing, C., Olivotto, I.A., Van Patten, C., Dunn, B.P., Coldman, A.J., Potter, J.D., Gallagher, R.P. and Hislop, T.G. (2003). Waist-to-hip ratio and breast cancer mortality. American journal of epidemiology, 158(10), 963-968.
 
[8]  Celis-Morales, C.A., Lyall, D.M., Steell, L., Gray, S.R., Iliodromiti, S., Anderson, J., Mackay, D.F., Welsh, P., Yates, T., Pell, J.P. and Sattar, N. (2018). Associations of discretionary screen time with mortality, cardiovascular disease and cancer are attenuated by strength, fitness and physical activity: findings from the UK Biobank study. BMC medicine, 16(1), 77.
 
[9]  Wang, Y., Chen, S., Zhang, J., Zhang, Y., Ernstsen, L., Lavie, C.J., Hooker, S.P., Chen, Y. and Sui, X. (2018). Nonexercise Estimated Cardiorespiratory Fitness and All-Cancer Mortality: the NHANES III Study. In Mayo Clinic Proceedings.
 
[10]  Sui, X., Howard, V. J., McDonnell, M. N., Ernstsen, L., Flaherty, M. L., Hooker, S. P., & Lavie, C. J. (2018). Racial Differences in the Association Between Nonexercise Estimated Cardiorespiratory Fitness and Incident Stroke. In Mayo Clinic Proceedings.
 
[11]  Clays, E., Lidegaard, M., De Bacquer, D., Van Herck, K., De Backer, G., Kittel, F., ... & Holtermann, A. (2013). The combined relationship of occupational and leisure-time physical activity with all-cause mortality among men, accounting for physical fitness. American journal of epidemiology, 179(5), 559-566.
 
[12]  Prasitsiriphon, O., & Pothisiri, W. (2018). Associations of Grip Strength and Change in Grip Strength With All-Cause and Cardiovascular Mortality in a European Older Population. Clinical Medicine Insights: Cardiology, 12, 1179546818771894.
 
[13]  Hu, H., Wang, J., Han, X., Li, Y., Wang, F., Yuan, J., Miao, X., Yang, H. and He, M. BMI, Waist Circumference and All-Cause Mortality in a Middle-Aged and Elderly Chinese Population. The journal of nutrition, health & aging, 1-7.
 
[14]  Wang, Y. C., Bohannon, R. W., Li, X., Yen, S. C., Sindhu, B., & Kapellusch, J. (2018). Summary of grip strength measurements obtained in the 2011-2012 and 2013-2014 National Health and Nutrition Examination Surveys. Journal of Hand Therapy.
 
[15]  Carnethon, M. R., Gulati, M., & Greenland, P. (2005). Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults. Jama, 294(23), 2981-2988.
 
[16]  Ogden, C. L., Fakhouri, T. H., Carroll, M. D., Hales, C. M., Fryar, C. D., Li, X., & Freedman, D. S. (2017). Prevalence of obesity among adults, by household income and education-United States, 2011–2014. MMWR. Morbidity and mortality weekly report, 66(50), 1369.
 
[17]  Lunt, H., Roiz De Sa, D., Roiz De Sa, J., & Allsopp, A. (2013). Validation of one-mile walk equations for the estimation of aerobic fitness in British military personnel under the age of 40 years. Military medicine, 178(7), 753-759.
 
[18]  Elder, C. L., Pujol, T. J., & Barnes, J. T. (2003). An analysis of undergraduate exercise science programs: An exercise science curriculum survey. The Journal of Strength & Conditioning Research, 17(3), 536-540.
 
[19]  Waryasz, G. R., Daniels, A. H., Gil, J. A., Suric, V., & Eberson, C. P. (2016). Personal trainer demographics, current practice trends and common trainee injuries. Orthopedic reviews, 8(3).
 
[20]  Liguori, G., Dwyer, G. B., Fitts, T. C., & Lewis, B. (Eds.). (2014). ACSM’s Resources for the health fitness specialist. Champaign, IL: Human Kinetics.
 
[21]  American College of Sports Medicine. (2018). ACSM's guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
 
[22]  Raven P, Wasserman D, Squires W, Murray T. Exercise Physiology. Nelson Education. 2012.
 
[23]  American College of Sports Medicine. ACSM’s Resources for the Exercise Physiologist, 2nd. Philadelphia, Md.: Lippincott Williams & Wilkins. 2017.
 
[24]  American College of Sports Medicine. (2012). ACSM's resource manual for guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
 
[25]  Haff, G. G., & Triplett, N. T. (Eds.). (2015). Essentials of strength training and conditioning 4th edition. Human kinetics.
 
[26]  Welk, G. J., & Meredith, M. D. Fitnessgram/Activitygram Reference Guide. 2008. Dallas, TX: The Cooper Institute.
 
[27]  Ramsbottom R, Brewer J, Williams C. A Progressive Shuttle Run Test to Estimate Maximal Oxygen Uptake. Br Sports Med. 1988; 22: 141-144.
 
[28]  George, J. D., Stone, W. J., & Burkett, L. N. (1997). Non-exercise VO2max estimation for physically active college students. Medicine and science in sports and exercise, 29(3), 415-423.
 
[29]  Wells, K.F. & Dillon, E.K. (1952). The sit and reach. A test of back and leg flexibility. Research Quarterly, 23. 115-118.
 
[30]  Katzmarzyk, P. T., & Craig, C. L. (2002). Musculoskeletal fitness and risk of mortality. Medicine and science in sports and exercise, 34(5), 740-744.
 
[31]  Bravell, M. E., Finkel, D., Aslan, A. D., Reynolds, C. A., Hallgren, J., & Pedersen, N. L. (2017). Motor functioning differentially predicts mortality in men and women. Archives of gerontology and geriatrics, 72, 6-11.
 
[32]  Morrow Jr, J. R., Mood, D., Disch, J., & Kang, M. (2015). Measurement and Evaluation in Human Performance, 5E. Human Kinetics.
 
[33]  Cody, R. P., & Smith, J. K. (2006). Applied Statistics & SAS Programming. Prentice Hall.
 
[34]  Cohen, R. A. (2006). Introducing the GLMSELECT procedure for model selection. In Proceedings of the Thirty-First Annual SAS Users Group International Conference.
 
[35]  Hart, P. D. (2018). Multivariate Analysis of Vertical Jump Predicting Health-related Physical Fitness Performance. American Journal of Sports Science and Medicine, 6(4): 99-105.
 
[36]  O'Donovan, G., Bakrania, K., Ghouri, N., Yates, T. E., Gray, L. J., Hamer, M., ... & Gill, J. M. (2016). Non-exercise equations to estimate fitness in white European and South Asian men. Medicine & Science In Sports & Exercise. 48(5): 854-9.
 
[37]  Bradshaw, D. I., George, J. D., Hyde, A., LaMonte, M. J., Vehrs, P. R., Hager, R. L., & Yanowitz, F. G. (2005). An accurate VO2max nonexercise regression model for 18–65-year-old adults. Research quarterly for exercise and sport, 76(4), 426-432.
 
[38]  Stickley, C. D., Wages, J. J., Kimura, I. F., & Hetzler, R. K. (2012). Validation of a Nonexercise Prediction Equation of Anaerobic Power. The Journal of Strength & Conditioning Research, 26(11), 3067-3074.
 
[39]  Allison, P. D. (1999). Multiple regression: A primer. Pine Forge Press.
 
[40]  Balsalobre-Fernández, C., Marchante, D., Muñoz-López, M., & Jiménez, S. L. (2018). Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. Journal of sports sciences, 36(1), 64-70.
 
[41]  Mayorga-Vega, D., Aguilar-Soto, P., & Viciana, J. (2015). Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. Journal of sports science & medicine, 14(3), 536.
 
[42]  Crotti, M., Bosio, A., & Invernizzi, P. L. (2018). Validity and reliability of submaximal fitness tests based on perceptual variables. The Journal of sports medicine and physical fitness, 58(5), 555-562.
 
[43]  Gupta, S., & Kapoor, S. (2014). Body adiposity index: its relevance and validity in assessing body fatness of adults. ISRN obesity, 2014.