Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Applied Mathematics and Statistics. 2018, 6(2), 72-79
DOI: 10.12691/AJAMS-6-2-6
Original Research

A Joint Model for Exponential Survival Data and Poisson Count Data

Abeysinghe A Sunethra1, and Marina R Sooriyarachchi1

1Department of Statistics, university of Colombo, Sri Lanaka

Pub. Date: May 04, 2018

Cite this paper

Abeysinghe A Sunethra and Marina R Sooriyarachchi. A Joint Model for Exponential Survival Data and Poisson Count Data. American Journal of Applied Mathematics and Statistics. 2018; 6(2):72-79. doi: 10.12691/AJAMS-6-2-6

Abstract

This research is motivated by the correlated outcomes of survival times and counts particularly in medical data. Analysis on individual patient data consisting of recurrent events of disease progression and survival times/death times give better results when a bivariate model/joint model of ‘survival’ and ‘count’ is used rather than fitting separate univariate models. For this purpose, a joint model for a proportional hazard survival response and a Poisson count responses is presented. The methodological aspects of the proposed model is outlined including parameter estimation. The proposed model was examined on a large scale simulation study and superior performance was demonstrated over the separate univariate models. The model was further showcased on an actual clinical trial data and found out to be capable of capturing the correlation between the survival and count variables found in the data.

Keywords

bivariate response, joint model, event counts, survival data

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Aitkin, M., & Clayton, D. (1980). The fitting of exponential, Weibull and extreme value distributions to complex censored survival data using GLIM. Applied Statistics, 156-163.
 
[2]  Belot, A., Rondeau, V., & Remontet, L. (2014). A joint frailty model to estimate the recurrence process and the disease-specific mortality process without needing the cause of death. Statistics in Medicine.
 
[3]  Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in medicine, 24(11), 1713-1723.
 
[4]  Carroll, R., Ruppert, D., Stefanski, L., & Crainiceanu, C. (2006). Measurement error in nonlinear models: a modern perspective. CRC press.
 
[5]  Cowling, B. J. (2003). Survival models for censored point processes. Doctoral dissertation, University of Warwick.
 
[6]  Cowling, B. J., Hutton, J. L., & Shaw, J. E. (2006). Joint modelling of event counts and survival times. Journal of the Royal Statistical Society: Series C (Applied Statistics).
 
[7]  Crowder, M. J. (2012). Multivariate Survival Analysis and Competing Risks. CRC Press.
 
[8]  Da Silva, G. T., & De Lima, A. C. (2003). Using SAS software for Multilevel Models in Survival Analysis. PharmaSUG SAS Users Group Conference. Miami, Florida.
 
[9]  Lai, TL, Lavori, PW, Shih, MC (2012). Sequential design of phase II-III cancer trials. Stat Med, 31, 18:1944-60.
 
[10]  Liu, L., Wolfe, R. A., & Huang, X. (2004). Shared frailty models for recurrent events and a terminal event. Biometrics, 60(3), 747-756.
 
[11]  Pinheiro, J.C. and Bates, D.M. (1995), “Approximations to the Log-likelihood Function in the Nonlinear Mixed-effects Model,” Journal of Computational and Graphical Statistics, 4, 12 -35.
 
[12]  Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to - Event data with Applications in R . CRC Press.
 
[13]  Rizopoulos, D. (2012). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. Computational Statistics & Data Analysis, 56(3), 491-501.
 
[14]  Rogers, J. K., & Hutton, J. L. (2013). Joint modelling of pre-randomisation event counts and multiple post-randomisation survival times with cure rates: application to data for early epilepsy and single seizures. Journal of Applied Statistics, 40(3), 546-562.
 
[15]  Verity, C. M., Hosking, G., & Easter, D. J. (1995). A multicentrecomparative trial of sodium valproate and carbamazepine in paediatric epilepsy.Developmental Medicine & Child Neurology, 37(2), 97-108.
 
[16]  Vonesh, E. F., Greene, T., & Schluchter, M. D. (2006). Shared parameter models for the joint analysis of longitudinal data and event times. Statistics in medicine, 25(1), 143-163.
 
[17]  Whitehead, J. (1980). Fitting Cox's regression model to survival data using GLIM .Applied Statistics, 268-275.