Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Applied Mathematics and Statistics. 2017, 5(5), 169-174
DOI: 10.12691/AJAMS-5-5-3
Original Research

New Prospective on Multiple Dice Rolling Game and Its Statistical Implications

Jimbo Henri Claver1, 2, , Jawad Azimi3 and Takeru Suzuki2

1Department of Applied Mathematics and Statistics, Joint Waseda University, Tokyo, Japan and American University of Afghanistan, Faculty Building 1, D-22, Po.Box 458, Central Post, Kabul, Afghanistan

2Department of Applied Mathematics, Waseda University, Tokyo, Japan

3Japan International Cooperation Agency (JICA), Head Office, Kabul, Afghanistan

Pub. Date: December 26, 2017

Cite this paper

Jimbo Henri Claver, Jawad Azimi and Takeru Suzuki. New Prospective on Multiple Dice Rolling Game and Its Statistical Implications. American Journal of Applied Mathematics and Statistics. 2017; 5(5):169-174. doi: 10.12691/AJAMS-5-5-3

Abstract

We present a mathematical formulation of the Multiple Dice Rolling (MDR) game and develop an adaptive computational algorithm to simulate such game over time. We use an extended version of the well-known Chapman-Kolmogorov Equations (CKEs) to model the state transition of the probability mass function of each side of the dice during the game and represent the time-dependent propensity of the game by a simple regression process, which enable to capture the change in the expectation over time. Furthermore, we perform a quantitative analysis on the outcome of the game in a framework of Average Probability Value (APV) of appearance of a side of the dice over trials. The power of our approach is demonstrated. Our results also suggest that in the MDR game, the APV of appearance of a side of a dice can be appropriately predicted independently of the number of sides and trials.

Keywords

MDR Game, Chapman-Kolmogorov Equations, simulation, propensity, statistics, expectation and regression

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Ferguson, T. S. (1968). Mathematical statistics - A decision theoretic approach. Academic Press, New York.
 
[2]  Krasovskij, N. N. (1970), Game theoretic problem of capture. Nauka, Moscow.
 
[3]  Murray, H. J. R. (2002). A history of chess. Oxford University Press, London, Reprint.
 
[4]  Alon, N. & Krilievich, M. (2006). Extremal and probabilistic combinatory. Canad. J. Math, 11:34-38.
 
[5]  Backwell, D. & Girshick, M.A. (1954) Theory of games and statistical decisions. John Wiley & Sons, New York.
 
[6]  Conway, J. H. (1976). On numbers and games. Academic Press, New York.
 
[7]  Kolmogorov, A.N. (1988). Foundation of the theory of probability. (3rd eds). Phasis, Moscow.
 
[8]  Aumann, R.J. (1989). Lecture note on Game Theory, Westview Press Inc., Boulder, Colorado
 
[9]  Iverson, G. R. & Longcour, W. H. (1971). Bias and runs in dice throwing and recording: A Few million throws. Psychometrika, 36, 01.
 
[10]  Kreps, D. M. (1990) Game theory and Economic Modeling, Oxford University Press.
 
[11]  Maitra, A. P. & Sudderth, W. D. (1996). Discrete gambling and stochastic games: Applications of mathematics 32. Springer-Verlag.
 
[12]  Morris, P. (1994) Introduction to game theory. Springer-Verlag, New York.
 
[13]  Roth, A. E. & Sotomayor, M. A. O. (1990). Two sides matching- A study in game theoretic modeling and analysis. Cambridge University Press.
 
[14]  Feller, W. (1972). An introduction to probability theory and its applications. John Wiley & Son, New York, vol. 2.
 
[15]  Jimbo, H.C. (2004). Distribution characterization in a practical moment problem. Acta Mathematica, no 4, 73, 1.
 
[16]  Kac. J. L, Logan, L. L. (1976). Fluctuating phenomena. Eds. E.S.W. Montroll & J:L: Lebowitz, North Holland, Amsterdam.
 
[17]  Knifer R. (1999). Dice game properly explained. Elliot Right Wy Books. ISBN 0-7160-2112-9W.