Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Applied Mathematics and Statistics. 2017, 5(4), 119-124
DOI: 10.12691/AJAMS-5-4-2
Original Research

The Statistical Models Project (SMp) for Evaluations of Biological Radiation Effects

Terman Frometa-Castillo1,

1Oncology Hospital of Santiago of Cuba, 6134 N Oakley Ave Unit 2, Chicago, 60659, IL, USA

Pub. Date: November 10, 2017

Cite this paper

Terman Frometa-Castillo. The Statistical Models Project (SMp) for Evaluations of Biological Radiation Effects. American Journal of Applied Mathematics and Statistics. 2017; 5(4):119-124. doi: 10.12691/AJAMS-5-4-2

Abstract

This document provides probabilistic-mechanistic models for describing the cell kill (K) and cell sub-lethal damage (SL) for one fraction with a dose of radiation that is absorbed by a living tissue; also this provides the K and SL formalisms for fractioned irradiation regimens. These models and formalisms are based on real mean behavior of cell survival (S) - a complement of K- and strong probabilistic-radiobiological foundations. The K and SL formalisms include all possible factors affecting the biological radiation effects: dose (d), fractionations (n), SL, and the temporal factors: cell repair and cell repopulation. It is discussed some aspects about the widely used linear-quadratic (LQ) S(d) model and LQ S(n,d) formalism, and one of its derivations, the BED (biologically effective dose). The SMp K(d) parameters can be obtained from S data, or using graphical/analytical tools developed by this study. These new formalisms will be useful for simulations of treatments, and together regional damage distribution for optimizations of the treatment planning.

Keywords

BED, LQ model, stochastic effects, cell survival

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Jang S, Frometa-Castillo T, Pyakuryal AP, Sio T, Piseaux R, Acosta S, Ocana K., The Statistical NTCP and TCP models in the Proton therapy”, Med. Phys. 43, 3451, 2016.
 
[2]  Uzan J, Nahum AE., “Radiobiologically guided optimisation of the prescription dose and fractionation schemme in radiotherapy using BioSuite”, The British Jounal of Radiology, 85, 1279-1286, 2012.
 
[3]  Jones B, Al Morgan D., Radiobiological Modelling in Radiation Oncology. The British Institute of Radiobiology. Chapter 4, Radiotherapy fraction; p. 51-76, 2007.
 
[4]  Fowler JP., “21 years of Biologically Effective Dose”. Br J Radiol.; 83(991): 554-568, 2010.
 
[5]  Dale R, Deehan C., Radiobiological Modelling in Radiation Oncology. The British Institute of Radiobiology. Chapter 4, Brachytherapy; p. 113-136, 2007.
 
[6]  Hoffmann A, Nahum AE., “Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects”, Phys. Med Biol. 58: 6897-6914, 2013.
 
[7]  American Association of Physicists in Medicine AAPM Report No.166, “The Use and QA of Biologically Related Models for Treatment Planning”, 2012.
 
[8]  El Naqa I, Suneja G, Lindsay PE, Hope HJ, Alaly JR, Vicic M, Bradley JD, Apte A, Deasy JO., “Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships”, Phys Med Biol;51: 5719-35, 2006.
 
[9]  El Naqa I, Pater P, Seuntjens J., “Monte Carlo role in radiobiological modelling of radiotherapy outcomes”. Phys. Med. Biol. 57 R75-R97, 2012.
 
[10]  Holloway RP, Dale R., “Theoretical implications of incorporating relative biological effectiveness into radiobiological equivalence relationships”, Br J Radiol; 86:20120417, 2013.
 
[11]  Dale R.,” Use of the Linear-Quadratic Radiobiological Model for quantifying kidney response in targeted radiotherapy”. Cancer radiotherapy & Radiopharnaceuticals, Vol. 19, No. 3. p. 363-370, 2004.
 
[12]  Carabe-Fernandez A, Dale RG, Jones B., “The incorporation of the concept of minimum RBE (RBE min) into the linear-quadratic model and the potential for improved radiobiological analysis of high-LET treatments”, International Journal of Radiation Biology, vol. 83, no. 1, pp. 27-39, 2007.
 
[13]  Fager M., “Radiobiological plan optimization in proton therapy for prostate tumors using a patched integrated edge [pie] technique”, [master’s thesis]. Pennsylvanian: University of Pennsylvania, 2013.
 
[14]  Ramos-Méndez J, Perl J, Schümann J, Shin J, Paganetti H, Faddegon B., “A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy”, Phys. Med. Biol. 60: 5037-5052, 2015.
 
[15]  Joiner MC, Van der Kogel A., Basic Clinical Radiobiology Fourth Edition, CRC Press, 2009.
 
[16]  Park C, Papiez L, Zhang S, Story M, Timmerman RD.,” Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy”, Int J Radiat Oncol Biol Phys;70:847-852. 2008.
 
[17]  Guerrero M, Li XA., Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy” , Phys. Med. Biol. 49: 4825-4835, 2004.
 
[18]  Frometa-Castillo T.,” Modeling and Simulation techniques for determining the Tfd TCP and NTCP model parameters”. Poster session presented at: The BMES/FDA Frontiers in Medical Device Conference, May 23-25; College Park, MD, 2016
 
[19]  Frometa-Castillo T., Jang S, Pyakuryal AP, Sio T., “The computer-biological RT simulators”, Poster session presented at: The BMES/FDA Frontiers in Medical Device Conference, May 16-18; Washington DC, 2017.
 
[20]  Frometa-Castillo T., Frometa-Leon E., “The statistical models project (SMp) in optimization of radiotherapy treatments”, International Journal of Radiology & Radiation Therapy. [Online] Available: http://medcraveonline.com/IJRRT/IJRRT-04-00089.pdf [Accessed Oct 30,2017].