Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Applied Mathematics and Statistics. 2016, 4(6), 185-193
DOI: 10.12691/AJAMS-4-6-4
Original Research

Coincidences, Goodness of Fit Test and Confidence Interval for Poisson Distribution Parameter via Coincidence

Victor Nijimbere1,

1School of Mathematics and Statistics, Carleton University, Ottawa, Canada

Pub. Date: January 03, 2017

Cite this paper

Victor Nijimbere. Coincidences, Goodness of Fit Test and Confidence Interval for Poisson Distribution Parameter via Coincidence. American Journal of Applied Mathematics and Statistics. 2016; 4(6):185-193. doi: 10.12691/AJAMS-4-6-4

Abstract

The probability of the coincidence of some discrete random variables having a Poisson distribution with parameters λ1, λ2, …, λn, and moments are expressed in terms of the hypergeometric function 1Fn or the modified Bessel function of the first kind if n=2. Considering the null hypothesis H0: λ12=….= λn, where θ is some positive constant number, asymptotic approximations of the probability and moments are derived for large θ using the asymptotic expansion of the hypergeometric function 1Fn and that of the modified Bessel function of the first kind if n=2. Further, we show that if the sample mean is a minimum variance unbiased estimator (MVUE) for the parameter λi, then the probability that H0 is true can be approximated by that of a coincidence. In that case, a chi-square χ2 goodness of fit test can be established and a 100(1-α)% confidence interval (CI) for θ can be constructed using the variance of the coincidence (or via coincidence) and the Central Limit Theorem (CLT).

Keywords

probability, hypergeometric functions, modified bessel functions, asymptotic expansion, MVUE

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, Nat. Bur. Stands, 1964.
 
[2]  Andersen, B., Hansen, N.H.., Iversen, V.B., Use of minicomputer for telephone traffic measurements, Teletenik (Engl. Ed.), 15, 33-46, 1971.
 
[3]  D. Bear, Principles of telecommunication traffic engineering, 3rd Edition, Peter Peregrinus Ltd, 1988.
 
[4]  G. Casella, R.L. Berger, Statistical inference, 2nd Edition, Duxbury, 2001.
 
[5]  D. Doane, L. Seward, Applied statistics in business and economics, 3rd Edition, Macgraw-Hill, 2010.
 
[6]  R.A. Donnelly Jr., Business statistics, Pearson Education inc., Upper Saddle River New Jersey, 2012.
 
[7]  Griffths, M., Remodified Bessel functions via coincidences and near coincidences, J. Integer Seq., 14, 1-10, 2011.
 
[8]  Griffths, T.L., Tenenbaum, J.B., From mere coincidences to meaningful discoveries, Cognition, 103 (2), 180-226. May 2007.
 
[9]  G. Grimmett, D. Stirzaker, Probability and random processes, 3rd Edition, Oxford University Press, 2001.
 
[10]  Nemenman, E., Coincidences and estimetion of entropies of random variables with large cardinalities, Entropy, 13(12), 2013-2023. Dec. 2011.
 
[11]  NIST Digital Library of Mathematical Functions. [Online]. Available: http://dlmf.nist.gov/16.11. [July15, 2016].
 
[12]  Sullivan, S.P., Probative inference from phenomenal coincidence demistifying the doctrine of chances, Law, Probability and Risk, 14(1), 27-50, 2015.
 
[13]  R.M. Weiers, Introduction to business statistics, Cengage Learning, Mason Ohio, 1988.
 
[14]  Skellam distribution, Wikipedia, The free encyclopedia, 2016. [Online] Available: http://en.wikipedia.org/wiki/Skellam_distribution. [June 15, 2016]