Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Applied Mathematics and Statistics. 2016, 4(4), 99-107
DOI: 10.12691/AJAMS-4-4-1
Original Research

Statistical Model of Polydisperse Fuel Spray in Three Dimensional Space

Ophir Nave1,

1Department of Mathematics, Ben-Gurion University of the Negev (BGU), PO Box 653 Beer-Sheva, 84105, Israel

Pub. Date: July 11, 2016

Cite this paper

Ophir Nave. Statistical Model of Polydisperse Fuel Spray in Three Dimensional Space. American Journal of Applied Mathematics and Statistics. 2016; 4(4):99-107. doi: 10.12691/AJAMS-4-4-1

Abstract

In this study, we investigate the problem of the effects of droplets dispersion dynamics on ignition of polydisperse spray in turbulent mixing layers using probability density function. Studies of this problem have been found to be instrumental in developing understanding of turbulent combustion including the ignition of turbulent gaseous diffusion flames. The parameters used to describe the distribution of droplet sizes are the moments of the droplet size distribution function which are allowed to vary in the fourth vector (x,y,z,t). In our analysis we applied the Homotopy Analysis Method. This method contains a certain auxiliary parameter which provides a way to control the convergence region and the rate of convergence of the series solutions.

Keywords

partial differential equations, polydisperse fuel spray, laminar boundary layer, Homotopy Analysis Method

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Tambour Y., Vaporization of polydisperse fuel sprays in a laminar boundary layer flow: a sectional approach. Combustion and Flame, 58 (1984) 103-114.
 
[2]  Tambour Y., A Lagrangian sectional approach for simulating droplet size distribution vaporizing fuel sprays in a turbulent jet. Combustion and Flame, 60 (1985) 15-28.
 
[3]  Tambour Y., Zehavi S., Derivation of near-field sectional equations for the dynamics of polydisperse spray flows: An analysis of the relaxation zone behind a normal shock wave, Combustion and Flame, 95, (1993), 383-409.
 
[4]  Katoshevski D., Tambour Y., A theoretical study of polydisperse liquid-sprays in a free shear-layer flow, Physics of Fluids A, 5, (1993) 3085-3098.
 
[5]  Adeniji-Fashola A. and Chen C.P., Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes. International Journal of Heat and Mass Transfer, 33(4) (1990).
 
[6]  A.A. Mostafa A.A., Mongia H.C., On the modeling of turbulent evaporating sprays: Eulerian versus Lagrangian approach. International Journal of Heat and Mass Transfer, 30(12) 1987.
 
[7]  Elghobashi, S., Abou-Arab T., Rizk M., Mostafa A., Prediction of the particle-laden jet with a two-equation turbulence model. International Journal of Multiphase Flow, 10(6) (1984).
 
[8]  F. A. Williams, Combustion theory, 2nd ed., Benjamin/Cummings, Menlo Park, CA, 1985.
 
[9]  Archambault M.R., and Edwards C.F., Computation of Spray Dynamics by Direct Solution of Moment Transport Equations-Inclusion of Nonlinear Momentum Exchange, In 8th International Conference on Liquid Atomization and Spray Systems (ICLASS-2000), Pasadena.
 
[10]  Beck J.C., Watkins A.P., On the Development of Spray Sub models Based on Droplet Size Moments. Journal of Computational Physics, 182(2) (2002).
 
[11]  Beck J.C., Computational Modeling of Polydisperse Sprays without Segregation into Droplet Size Classes, Ph.D. thesis (UMIST, 2000).
 
[12]  Beck J.C., and Watkins A.P., The droplet number moments approach to spray modeling: The development of heat and mass transfer sub-models, International Journal of Heat and Fluid Flow, 24(2) (2003).
 
[13]  Watkins A.P., Three-dimensional modeling of gas flow and sprays in diesel engines, in Computer Simulation for Fluid-Flow. Heat and Mass Transfer and Combustion in Reciprocating Engines, edited by N. C. Markatos (Hemisphere, Washington, DC, 1989).
 
[14]  Urzay J., Martinez-Ruiz D., Sánchez A.L., Linán A., Williams F.A., Flamelet structures in spray ignition. Center for Turbulence Research Annual Research Briefs 2013.
 
[15]  Jafari H., and Seifi S., Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 14(5) (2009).
 
[16]  Liao S.J., Beyond Perturbation: Introduction to the Homotopy Analysis Method. Boca Raton: CRC Press, Chapman & Hall, (2003).
 
[17]  S.J. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation 15 (2010) 2003-2016.