Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Applied Mathematics and Statistics. 2016, 4(3), 59-66
DOI: 10.12691/AJAMS-4-3-1
Original Research

Maximum Likelihood Approach for Longitudinal Models with Nonignorable Missing Data Mechanism Using Fractional Imputation

Abdallah S. A. Yaseen1, Ahmed M. Gad2, and Abeer S. Ahmed1

1The National Centre for Social and Criminological Research, Cairo, Egypt

2Statistics Department, Faculty of Economics and Political Science, Cairo University, Egypt

Pub. Date: May 30, 2016

Cite this paper

Abdallah S. A. Yaseen, Ahmed M. Gad and Abeer S. Ahmed. Maximum Likelihood Approach for Longitudinal Models with Nonignorable Missing Data Mechanism Using Fractional Imputation. American Journal of Applied Mathematics and Statistics. 2016; 4(3):59-66. doi: 10.12691/AJAMS-4-3-1

Abstract

In longitudinal studies data are collected for the same set of units for two or more occasions. This is in contrast to cross-sectional studies where a single outcome is measured for each individual. Some intended measurements might not be available for some units resulting in a missing data setting. When the probability of missing depends on the missing values, missing mechanism is termed nonrandom. One common type of the missing patterns is the dropout where the missing values never followed by an observed value. In nonrandom dropout, missing data mechanism must be included in the analysis to get unbiased estimates. The parametric fractional imputation method is proposed to handle the missingness problem in longitudinal studies and to get unbiased estimates in the presence of nonrandom dropout mechanism. Also, in this setting the jackknife replication method is used to find the standard errors for the fractionally imputed estimates. Finally, the proposed method is applied to a real data (mastitis data) in addition to a simulation study.

Keywords

longitudinal data, mastitis data, missing data, nonrandom dropout, parametric fractional imputation, repeated measures, standard errors

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Booth, J. G. and Hobert, J. P. (1999) Maximizing generalized linear models with an automated Monte Carlo EM algorithm, Journal of the Royal Statistical Society B, 61, 625-85.
 
[2]  Celeux, G. and Diebolt, J. (1985) The SEM algorithm: A probabilistic Teacher algorithm derived from the EM Algorithm for the mixture problem, Computational Statistics Quarterly, 2, 73-82.
 
[3]  Collett, D. (1991) Modelling Binary Data, Chapman and Hall, London.
 
[4]  Dempster, A. P, Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Society B, 39, 1-38.
 
[5]  Delyon, B, Laird, N. M. and Rubin, D. B. (1999) Convergence of a stochastic approximation version of the EM algorithm, The Annals of Statistics, 27(1), 94-128.
 
[6]  Diggle, P. J. and Kenward, M. G. (1994) Informative dropout in longitudinal data analysis, Journal of the Royal Statistical Society B, 43, 49-93.
 
[7]  Diggle, P.J. Liang, K. Y. and Zeger, S. L. (1994) Analysis of Longitudinal Data, Oxford: Oxford Science, UK.
 
[8]  Follmann, D. and Wu, M. (1995) An approximate generalized linear model with random effects for informative missing data, Biometrics, 51, 151-168.
 
[9]  Gad, A. M. and Ahmed, A. S. (2006) Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm, Computational Statistics & Data Analysis, 50, 2702-2714.
 
[10]  Gad, A. M. and Kenward, M. G. (2001) The Stochastic EM algorithm and sensitivity analysis for nonrandom dropout models, Proceedings of the 12th Conference for Statistics and Computer Modelling in Human and Social Sciences, Faculty of Economics and Political Science, Cairo University, Cairo, Egypt.
 
[11]  Gad, A. M. and Youssif, N. A. (2006) Linear mixed models for longitudinal data with nonrandom dropouts, Journal of Data Science, 4(4), 447-460.
 
[12]  Grannell, A. and Murphey, H. (2011) Using multiple imputation to adjust for survey non-response, Proceedings of the sixth ASC international conference, University of Bristol, UK.
 
[13]  Jennrich, R. I. and Schluchter, M. D. (1986) Unbalanced repeated-measures models with structured covariance matrices, Biometrics, 42, 805-820.
 
[14]  Kim, J. K. (2011) Parametric fractional imputation for missing data analysis, Biometrika, 98, 119-132.
 
[15]  Kim, J. K. and Fuller, W. (2008) Parametric fractional imputation for missing data analysis. Proceeding of the section on survey research method, Joint Statistical Meeting, pp. 158-169.
 
[16]  Kim, J. Y. and Kim, J. K. (2012) Parametric fractional imputation for nonignorable missing data, Journal of the Korean Statistical Society, 41, 291-303.
 
[17]  Little, R. J. and Rubin, D. B. (1987) Statistical Analysis with Missing Data, John Wiley & Sons, New York.
 
[18]  Kim, J. K. and Yu, C. L. (2009) A semi-parametric approach to fractional imputation for nonignorable missing data, Survey Research Methods Proceedings: 2603-2610.
 
[19]  Little, R. J. (1993) Pattern mixture models for multivariate incomplete data, Journal of American Statistical Association, 88, 125-134.
 
[20]  Louis, T. A. (1982) Finding the observed information matrix when using the EM algorithm, Journal of the Royal Statistical Society B, 44, 226-233.
 
[21]  McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, Chapman and Hall, London.
 
[22]  Molenberghs, G. and Fitzmaurice, G. (2009) Longitudinal Data, Fitzmaurrice, G. Davidian, M. Verbeke, M. and Molenberghs, G. Editors, Chapman & Hall/CRC Taylor & Francis Group, USA, ch.17.
 
[23]  Paik, M. and Larsen, M. D. (2006) Fractional regression nearest neighbor imputation, Proceedings of the joint statistical meeting, American Statistical Association, Alexandria, VA.
 
[24]  Rubin, D. B. (1987) A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. Discussion of Tanner and Wong, Journal of the American Statistical Association, 82, 543-546.
 
[25]  Wei, G. C. G. and Tanner, M. A. (1990) A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithm, Journal of the American Statistical Association, 85, 699-704.
 
[26]  Yang, X. Li, J. and Shoptaw, S. (2008) Imputation –based strategies for clinical trial longitudinal data with nonignorable missing values, Statistics in Medicine, 27, 2826-2849.
 
[27]  Yang, S., Kim, J. K. and Zhu, Z. (2012) Parametric fractional imputation using adjusted profile likelihood for linear mixed models with nonignorable missing data, Proceeding of the section on survey research method, Joint Statistical Meeting, pp. 4366-4376.